[1]邓友生,李 龙.KI 和 KII 型等值条件下 II 型断裂对 I 型断裂韧性值的干扰效应[J].佛山科学技术学院学报(自然科学版),2021,(05):001-10.
 DENGYou-sheng,LILong.Interferenceeffectoftype-IIfractureonthevalueoftype-IfracturetoughnesswhenKI=KII[J].JOURNAL OF FOSHAN UNIVERSITY NATUAL SCIENCE EDITION,2021,(05):001-10.
点击复制

KI 和 KII 型等值条件下 II 型断裂对 I 型 断裂韧性值的干扰效应
分享到:

《佛山科学技术学院学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年05期
页码:
001-10
栏目:
土木工程
出版日期:
2021-09-15

文章信息/Info

Title:
Interferenceeffectoftype-IIfractureonthevalueof type-IfracturetoughnesswhenKI=KII
文章编号:
20211102101
作者:
邓友生李 龙
(西安科技大学 建筑与土木工程学院,陕西 西安 710054)
Author(s):
DENGYou-shengLILong
(CollegeofCivilandArchitecturalEngineering,Xi’anUniversityofScienceandTechnology,Xi’an710054,China)
关键词:
断裂韧性裂纹能量释放率扰动效应I 型裂纹
Keywords:
fracturetoughnesscrackenergyreleaseratedisturbanceeffecttype-Icrack
分类号:
O346.1
文献标志码:
A
摘要:
利用奇异应力边界多裂纹开裂的几何模型,研究了 KI 和 KII 型等值条件下 II 型断裂对 I 型断裂韧性值 的干扰效应。 基于能量释放率与裂纹分叉理论,引入扰动系数 ε 建立多裂纹能量释放率模型,对比不同 ε 对 能量型开裂驱动力的影响,同时结合断裂力学中的 J 积分理论,分析、量化了扰动效应,给出了受 II 型弱载荷 影响的潜在 I 型裂纹扩展的断裂准则, 并与有限元结果进行对比。 研究表明, 等值条件下干扰系数 ε 在 0.317%~0.438%之间,说明在 I 型断裂韧性值测试过程中受到微弱 II 型断裂的影响;随着分析步逐渐增加,干 扰系数 ε 减小,说明断裂韧性值测试过程中干扰效应逐渐减弱;量化了 II 型弱载荷 I 型断裂韧性测试中的干 扰效应,有助于更好地分析实验过程中分散的测量数据,为复杂裂纹的边翼分叉和偏折研究提供新思路。
Abstract:
Theinterferenceeffectoftype-IIfractureonthevalueoftype-IfracturetoughnesswhenKI=KIIwere studiedbasedonthegeometricalmodelingforstresssingularityboundarymulti-directioncracking.Basedonthe energy release rate and crack bifurcation theory, the disturbance coefficient ε is introduced to establish a multi-crack energy release rate model, and the influence of different ε on the driving force of energy-type cracking is compared. At the same time, combined with the J integral theory in fracture mechanics, the disturbanceeffectisanalyzedandquantified.ThefracturecriterionofpotentialtypeIcrackpropagationaffected by type II weak load is given and compared with the finite element results. Studies have shown that the interferencecoefficientε isbetween0.317%and0.438%undertheequivalentconditions,indicatingthatthe typeIfracturetoughnessvaluetestisaffectedbyweaktypeIIfractures;astheanalysisstepgraduallyincreases, theinterferencecoefficientε decreases.Itshowsthattheinterferenceeffectisgraduallyweakenedduringthe fracturetoughnesstest;theinterferenceeffectinthetypeIIweakloadtypeIfracturetoughnesstestisquantified, whichishelpfultobetteranalyzethescatteredmeasurementdataintheexperimental process,and providesa newideaforthestudyofedgeandwingbifurcationanddeflectionofcomplexcracks

参考文献/References:

[1] AYATOLLAHIMR,ALIHAMRM,SAGHAFIH.Animprovedsemi-circularbendspecimenforinvestigatingmixedmode brittlefracture[J].EngFractMech,2011,78(1):110-123. [2] AYATOLLAHIMR,ALIHAMRM.Analysisofanewspecimenformixedmodefracturetestsonbrittlematerials [J].Eng FractMech,2009,76(11):1563-1573. [3] MOUSAVIA,ALIHAMRM,IMANIDM.EffectsofbiocompatibleNanofillersonmixed-modeIandIIfracturetoughnessof PMMAbasedentures[J].JMechBehavBiomedMater,2019,103:103566. [4] ALIHAMRM,BERTOF,BAHMANIA,etal.Fractureassessmentofpolymethylmethacrylateusingsharpnotcheddiscbend specimensundermixedModeIplusIIIloading[J].PhysMesomech,2016,19(4):92-100. [5]ALIHAMRM,AYATOLLAHIMR.Geometryeffectsonfracturebehaviourofpolymethylmethacrylate[J].MaterSciEngA, 2010,527:526-530. [6] AYATOLLAHIMR,ALIHAMRM,HASSANIMM.MixedmodebrittlefractureinPMMA—Anexperimental studyusing SCBspecimens[J].MaterSciEngA,2006,417:348-356. [7] ALIHAMRM,BAHMANIA,AKHONDIS.MixedmodefracturetoughnesstestingofPMMAwithdifferentthree-pointbend Modespecimens[J].EurJMechA-Solid,2016,58:148-162. [8] ALIHAMRM,BERTOF,BAHMANIA,etal.MixedmodeI/IIfractureinvestigationofPerspexbasedontheaveragedstrain energydensitycriterion[J].PhysMesomech,2016,19(6):5-12. [9] MOUSAVI S S, ALIHA M R M, IMANI D M. On the use of edge cracked short bend beam specimen for PMMA fracture toughnesstestingundermixed-modeI/II[J].PolymTest,2020,81:106199. [10] ALIHAMRM,MOUSAVI S S,BAHMANIA, et al.Crackinitiation angles and propagation paths in polyurethane foams undermixedmodesI/IIandI/IIIloading[J].TheorApplFractMech,2019,101:152-161. [11] ALIHA M R M, HOSSEINPOUR G R, AYATOLLAHI M R. Application of cracked triangular specimen subjected to three-pointbendingforinvestigatingfracture[J].RockMechRockEng,2013,46:1023-1034. [12]AYATOLLAHIMR,AKBARDOOSTJ.SizeandgeometryeffectsonrockfracturetoughnessModeIfracture[J].RockMech RockEng,2014,47:677-687. [13] ALIHAMRM,AYATOLLAHIMR.RockfracturetoughnessstudyusingcrackedchevronnotchedBraziliandiscspecimen underpuremodesIandIIloadingAstatisticalapproach[J].TheorApplFractMech,2014,69:17-25. [14] ALIHAMRM,ZIARIH,MOJARADIB,etal.HeterogeneityeffectsonmixedModeI/IIstressintensityfactorsandfracture path of laboratory asphalt mixtures in the shape of SCB specimen [J]. Fatigue Fract Engng Mater Struct, 2019, 43(1): 586-604. [15] ALIHA M R M, ZIARI H, MOJARADI B, et al. Modes I and II stress intensity factors of semi-circular bend specimen computedfortwo-phaseaggregate/masticasphaltmixtures[J].TheorApplFractMech,2019,106:102437. [16] FAKHRIM,AMOOSOLTANIE,ALIHAMRM.Crackbehavioranalysisof rollercompactedconcretemixturescontaining reclaimedasphaltpavementandcrumbrubber[J].EngFractMech,2017,180:43-59. [17] HAGHIGHAT POUR P J,ALIHAMRM,KEYMANESHMR.Evaluating mode Ifracture resistancein asphaltmixtures usingedgenotcheddiscbendENDBspecimenwithdifferentgeometricalandenvironmentalconditions[J].EngFractMech,2018,190:245-258. [18] ROOHOLAMINIH,HASSANIA,ALIHAMRM.Evaluatingtheeffectofmacro-syntheticfibreonthemechanicalproperties ofroller-compactedconcretepavementusingresponsesurfacemethodology[J].ConstrBuildMater,2018,159:517-529. [19]MIRSAYARAMM,SHIAX,ZOLLINGERDG.EvaluationofinterfacialbondstrengthbetweenPortlandcementconcreteand asphaltconcretelayersusingbi-materialSCBtestspecimen[J].EngSolidMech,2017,5(4):293-306. [20] MOTAMEDIH,FAZAELIH,ALIHAMRM,etal.Evaluationoftemperatureandloadingrateeffectonfracturetoughnessof fiberreinforcedasphaltmixtureusingedgenotcheddiscbend(ENDB)specimen[J].ConstrBuildMater,2020,234:117365. [21] ALIHA M R M, AMIRDEHI H R F. Fracture toughness prediction using Weibull statistical method for asphalt mixtures containingdifferentairvoidcontents,FatigueFract.Engng[J].MaterStruct,2017,40:55-68. [22] AMIRDEHIHRF,ALIHAMRM,MONIRIA,etal.Usingthegeneralizedmaximumtangentialstresscriteriontopredict mode II fracture of hot mix asphalt in terms of mode I results A statistical analysis [J]. Constr Build Mater, 2019, 213: 483-491. [23] POAPONGSAKORNP,CARLSSONLA.Fracturetoughnessofclosed-cellPVCfoam:Effectsofloadingconfigurationand cellsize[J].ComposStruct,2013,102:1-8. [24] AYATOLLAHIAMR,BAHRAMIAB,MIRZAEIAAM,etal.EffectsofsupportfrictiononmodeIstressintensityfactorand fracturetoughnessintesting[J].TheorApplFractMech,2019,103:102288. [25]KHANK,AL-SHAYEAROCKNA.EffectofspecimengeometryandtestingmethodonmixedModeI-IIfracturetoughnessof alimestonerockfromSaudiArabiaMech[J].RockEngng,2000,33(3):179-206. [26] SUNDARAMBM.Whydogrowingcracksbranch?Anopticalinvestigationofbrittlemonolithicandbilayertransparencies understresswaveloading[D].Auburn:AuburnUniversity,2017. [27] SUNDARAMBM,TIPPURHV.Dynamicfractureof soda-limeglass:Afull-field opticalinvestigation of crackinitiation, propagationandbranching[J].JMechPhysSolids,2018,120:132-153. [28] MIAOCY, TIPPURHV.Dynamicfracture of soda-lime glass plates studied usingtwomodifiedDigitalGradient Sensing techniques[J].EngFractMech,2020,232:107048. [29]SUNDARAMBM,TIPPURHV.Dynamicmixed-modefracturebehaviorsofPMMAandpolycarbonate[J].EngFracMech, 2017,176:186-212. [30] ERDOGANF,SIHGC.Onthecrackextensioninplatesunderplaneloadingandtransverseshear[J].JBasicEngngTrans ASME,1963,85:519-525. [31]SIHGC.Strain-energy-densityfactorappliedtomixedmodecrackproblems[J].IntJFract,1974,10:305-321. [32] HUSSAIN M A, PU S L, UNDERWOOD J. Strain energy release rate for a crack under combined mode I and Mode II. FractureAnalysis[M].Philadelphia:AmericanSocietyforTestingandMaterials,1974:2-28. [33] XIEYJ,DUOYL,YUANH.Potentialfracturepathsforcracked rocksundercompressive-shearloading [J]. IntJRock MechMinSci,2020,128:104216. [34] LI J,XIEY J,XHENGXY, et al.Underlyingfracturetrends andtriggering onMode-II crack branching and kinkingfor quasi-brittlesolids[J].EngFractMech,2019,211:382-400. [35] YUANH,XIEYJ,WANGW.UnderlyingfracturetrendsonMode-Icrackmultiple-branching[J].EngFractMech,2020, 225:106825. [36] XIEYJ,LIJ,HUXZ,etal.Modellingofmultiplecrack-branchingfromMode-Icracktipinisotropicsolids[J].EngFract Mech,2013,109:105-116. [37]庄茁,由小川,廖剑辉,等.基于 ABAQUS 的有限元分析和应用[M].北京:清华大学出版社,2009.

备注/Memo

备注/Memo:
收稿日期:2021-05-05 作者简介:邓友生(1969-),男,湖南桂阳人,西安科技大学教授,博士生导师。
更新日期/Last Update: 2021-10-21