[1]陆秀琴,温洁嫦.一类捕食者-食饵模型的分支分析[J].佛山科学技术学院学报(自然科学版),2021,(03):032-37.
 LUXiu-qin,WENJie-chang.Bifurcationanalysisofapredatorpreymodel[J].JOURNAL OF FOSHAN UNIVERSITY NATUAL SCIENCE EDITION,2021,(03):032-37.
点击复制

一类捕食者-食饵模型的分支分析
分享到:

《佛山科学技术学院学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
032-37
栏目:
出版日期:
2021-05-15

文章信息/Info

Title:
Bifurcationanalysisofapredatorpreymodel
文章编号:
1008-0171(2021)03-0032-06
作者:
陆秀琴温洁嫦
(广东工业大学 应用数学学院,广东 广州 510520)
Author(s):
LUXiu-qinWENJie-chang
(SchoolofAppliedMathematics,GuangdongUniversityofTechnology,Guangzhou510520,China)
关键词:
捕食者-食饵模型食饵收获率恐惧因子Hopf 分支
Keywords:
predator-preymodelpreyharvestingfeareffectHopfbifurcation
分类号:
:O175.12
文献标志码:
A
摘要:
研究一类食饵种群具有常数收获率和恐惧效应的捕食者 - 食饵模型的平衡点和分支问题。 首先给出系统模型平衡点的存在条件,然后讨论了平衡点的类型及稳定性和正平衡点的 Hopf 分支,且得出了产生 Hopf 分支的条件,最后对该模型做了数值仿真模拟。
Abstract:
Inthispaper,theequilibriumandbifurcationofapredator-preymodelwithconstantharvestingrateandfeareffectarestudied.Firstly,theexistenceconditionoftheequilibriumpointofthesystemmodelisgiven,thenthetypeandstabilityoftheequilibriumpointandtheHopfbifurcationofthepositiveequilibriumpointarediscussed, and the conditions for the Hopf bifurcation are obtained. Finally, the numerical simulation of themodeliscarriedout

参考文献/References:

[1]马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1996.[2] ZHU C R, LAN K Q. Phase Portraits, Hopf Bifurcation and Limit Cycles of Leslie-Gower Predator-prey Systems withHarvestingRates[J].DiscreteContinDyn,2010,14,289-306.[3]GONGYJ,HUANGJC.Bogdanov-TakensBifurcationinaLeslie-GowerPredator-preyModelwithPreyHarvesting[J].ActaMathematicaeApplicataeSinica,2014,30(1):239-244.[4] LIU X L. Bifurcation of an Eco-epidemiological Model with a Nonlinear Incidence Rate [J]. Applied Mathematics andComputation,2011,218,2300-2309.[5] HUANGJC,GONGYJ,RUANSG.BifurcationAnalysisinaPredator-preyModelwithConstant-yieldPredatorHarvesting[J].DiscreteandContinuousDynamicalSystems,2013,18(8):2101-2121.[6]HUANGJ,RUANS,SONGJ.Bifurcationsinapredator-preysystemofLeslietypewithgeneralizedHollingtypeIIIfunctionalresponse[J].Journalofdifferentialequations,2014,257(6):1721-1752.[7] CAIL,CHENG,XIAOD.Multiparametricbifurcationsofanepidemiologicalmodelwith strongAlleeeffect [J]. Journalofmathematicalbiology,2013,67(2):185-215.[8]刘宣亮,王志星.一类捕食者有传染病的捕食者 - 食饵模型的分支分析[J].北华大学学报(自然科学版),2018,19(3):281-290.[9] XU C, YUAN S, ZHANG T. Global dynamics of a predator-prey model with defence mechanism for prey [J]. AppliedMathematicsLetters,2016,62(2):42-48.[10] YUAN S,XUC, ZHANG T. Spatial dynamicsin a predator-prey modelwith defence mechanismfor prey [J]. ChaosAnInterdisciplinaryJournalofNonlinearScience,2013,23(3):220-236.[11] ZANETTELY,WHITEAF,ALLENMC,etal.Perceivedpredationriskreducesthenumberofoffspringsongbirdsproduceperyear[J].Science,2011,334(6061):1398-1401.[12] WANGXY,ZANETTEL,ZOUXF.ModellingtheFearEffectinPredator-preyInteractions[J].JMathBiology,2016,73:1179-1204.[13]张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985.[14]马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.[15]KUZNETSOVYA.ElementsofAppliedBifurcationTheory[M].2nded.NewYork:Springer-Verlag,1998

备注/Memo

备注/Memo:
收稿日期:2020-09-16作者简介:陆秀琴(1994-),女,广东清远人,广东工业大学硕士研究生。通信作者:温洁嫦(1964-),女,广东广州人,广东工业大学教授。
更新日期/Last Update: 2021-06-12